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Nozzles, rocket fairings and many engineering structures/components are often made of
conical shells. This paper focuses on the "nite element modelling, analysis, and control of
conical shells laminated with distributed actuators. Electromechanical constitutive
equations and governing equations of a generic piezo(electric)elastic continuum are de"ned
"rst, followed by the strain}displacement relations and electric "eld}potential relations of
laminated shell composites. Finite element formulation of a piezoelastic shell element with
non-constant LameH parameters is brie#y reviewed; element and system matrix equations of
the piezoelastic shell sensor/actuator/structure laminate are derived. The system equation
reveals the coupling of mechanical and electric "elds, in which the electric force vector is
often used in distributed control of shells. Finite element eigenvalue solutions of conical
shells are compared with published numerical results "rst. Distributed control of the conical
shell laminated with piezoelectric shell actuators is investigated and control e!ects of three
actuator con"gurations are evaluated.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Conical shell structures and components are often used as nozzles, injectors, rocket fairings,
fan blades, etc., in aerospace structures and turbomachinery. Undesirable dynamic
oscillations not only degrade the performance, but also in#uence structural integrity and
reliability. Dynamics and vibrations of conical shells have been widely studied [1, 2];
however, distributed vibration control of conical shells has not caught much attention over
the years. Recent rapid development of smart structures and structronic systems provides
many new design options for the next-generation high-performance mechanical and
structural systems [3, 4]. Based on the smart structures and structronics technology, this
study is to evaluate dynamic characteristics and control e!ects of conical shells laminated
with fully or diagonally distributed piezoelectric sensor/actuator layers.

Piezoelectrics, shape-memory materials, electrostrictive materials, magnetostrictive
materials, photostrictive materials, electro- and magneto-rheological materials, etc., are
electro-, magneto-, and/or optoelectro-mechanically controllable materials and thus they
are generally accepted as &&smart'' materials [3, 4]. Among these smart materials,
piezoelectric materials are probably the most popular smart materials applied to both
sensor and actuator applications. Distributed sensing and control of shells and plates using
piezoelectric materials have been investigated over the years [5]. Distributed control e!ects
of one-dimensional and two-dimensional planar structures, e.g., beams and plates, are
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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studied and compared [5}11], and also rings and shells [5, 12}15]. Piezothermoelastic
characteristics and temperature in#uences on piezoelectric sensors and actuators of
beam-type precision devices and cylindrical shell structures have been studied [15}17]. This
study is to investigate the modelling, analysis, and distributed vibration control of
piezoelectric laminated conical shells. Fundamental piezoelectric constitutive and
governing equations are brie#y reviewed and the formulation of a new piezo(electric)-elastic
triangle composite shell "nite element with non-constant radii of curvature is presented.
Dynamic characteristics and distributed vibration controls of conical shells are
investigated. Control e!ects of three actuator designs are evaluated.

2. GOVERNING EQUATIONS

Electromechanical constitutive and equilibrium equations of a piezo(electric)elastic
continuum are de"ned "rst, and followed by generic shell strain}displacement de"nitions of
a double-curvature piezoelastic shell laminate in this section. Finite element formulations
are presented in the next section. The linear piezoelectric constitutive equations coupling
the electric and elastic "elds are [5]
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denote the elastic moduli, piezoelectric coe$cient, dielectric constants, S
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are the

strain, and initial strains. In addition, the superscripts E, �, and S denote the coe$cients
de"ned at a constant electric "eld, temperature and strain respectively. For a piezoelastic
shell medium, with a volume < and a limited surface area S, subjected to both electric and
mechanical excitations, the linear governing equations, including the coupling among
deformation and electric potential, can be de"ned as [16}18]
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where f
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, �, and;G
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, respectively, denote the body force, mass density, and acceleration; and
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�
is the displacement. Note that Einstein's summation convention is used in the

expressions.
A piezoelastic laminated shell continuum is composed ofN laminae, and each lamina can

be either an elastic material or a piezoelectric material, Figure 1. It is assumed that the
piezoelastic shell is exposed to mechanical and electrical inputs. Considering small
deformation of the laminated piezoelastic shell, one can derive the strain S

��
and electric "eld

E
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equations de"ned in an orthogonal curvilinear co-ordinate system (�

�
, �

�
, �

�
). The strain

(S
��
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) } electric potential (�) relations in

a tri-orthogonal shell co-ordinate system are de"ned as [5, 17]
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Figure 1. A piezo(electric)elastic laminated shell continuum.
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where S
��
, �, and E

�
denote the strains, electric potential, and electric "elds, respectively, R

�
and R

�
are the radii of principal curvature, and A

�
and A

�
are the LameH parameters.

There are mechanical and electric boundary conditions associated with the piezoelastic
shell continuum, i.e.,
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where;
�
is the displacement, l

�
is the direction cosine components, f

�
is the surface force, � is

the electric potential, Q is the charge, and ( .� ) denotes a known boundary value. Using the
weighted residual method and introducing arbitrary weighting quantities �;

�
and ��, one

can rewrite the weak form of the equilibrium equations as [17, 19]
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where the quantities �;
�
and �� can be de"ned as the virtual displacement and electric

potential respectively. Integrating each term by parts, taking into account of boundary



Figure 2. Triangular piezoelastic composite shell "nite element.
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conditions de"ned in equations (12)} (15), and noting that �;
�
"0 on S

�
and ��"0 on S

(
,

one can simplify equations (16) and (17) to
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Note that equations (18) and (19) are the virtual work expressions of the
piezo(electric)-elastic shell continuum.

3. PIEZOELASTIC FINITE ELEMENT FORMULATION

A new 12-node, 48-degree-of-freedom curved triangular laminated piezoelastic shell
element with non-constant radii of curvature (i.e., non-constant LameH parameters) is
developed. Figure 2 illustrates the triangular shell element and all its 12 nodes. Each node
allows three displacement variables (i.e.,;���

�
(�),;���

�
(�), and;���

�
(�)) and one electric potential

variable ����(�) [14, 17].
Assumptions of layerwise constant shear angle and linear variation along the thickness of

each layer are used in the "nite element derivations. Thus, for an arbitrary ith layer, the
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where � is a transverse co-ordinate de"ned for the ith layer, h
�
is the thickness of the ith layer.

The displacement and potential expressions can be simply written as functions of shape
functions and the ith layer displacement vector
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displacements and electric potential of the ith and (i#1)th interfaces along the curvilinear
co-ordinate axes. [N���

�
(�)] and [N���

(
(�)] are the shape functions in terms of the co-ordinate �.

The interpolation functions of the surface-parallel displacements and electric potential in
each triangular region at the ith or (i#1)th interface are chosen to be continuous piecewise
quadratic in the form
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where a
�
(i"1,2, 6) are constants; and �

�
(i"1, 2, 3) are the global co-ordinates. Due to

the continuity across the edge between two adjacent triangle elements, equation (40)
becomes
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element. 	N
 is the quadratic shape function. Substituting equations (27)} (30) into
equations (24) and (25) yields the following displacement 	;M ���
 and electric potential 	�M ���

expressions:
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strain}displacement and electric "eld}potential expressions in terms of nodal variables of
the piezoelastic shell "nite element gives
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Substituting the constitutive equations (1) and (2), displacement-shape function equations
(24) and (25) and (31)} (34) into the equilibrium equations (18) and (19), one can derive the
nodal governing equations of the jth (planar) element located on the ith (thickness) layer in
matrix form,
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where [M���
���

] is the mass matrix, [C���
���
] is the damping matrix, [K���
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] (where x and y"u,

�), are the sti!ness matrices de"ned for the displacement and electric potential, and 	F���
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 are the mechanical and electric excitations. Detailed element matrices of
a laminated piezoelastic shell element are presented in Appendix A. The element damping
matrix [C���

���
] is assumed to be proportional to the sti!ness and mass matrices:
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are the initial damping ratio and natural frequencies [17]. If

two damping ratios and two natural frequencies are speci"ed, the damping estimation
results in an exact solution for � and �. If more than two damping ratios and frequencies are
speci"ed, a least-squares solution procedure can be used to determine � and �. Assembling
all element matrices yields the global system matrix equation
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For static applications, the dynamic system equation is reduced to
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In constant-gain negative velocity feedback control, the feedback control forces 	F�
�

 are

given by [5]
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where G is the gain, C
�
is the actuator capacitance, [ )]�� denotes the matrix inverse, and

	;Q 
 is the velocity. Note that, in this case, the feedback gain is constant while the feedback
amplitude varies with respect to the negative oscillating velocity (negative velocity, constant
gain proportional feedback control ) [5, 16, 17]. The developed new piezoelastic shell element
with non-constant LameH parameters and the "nite element code are used to investigate the
dynamics and the distributed control of conical shells is presented next.

4. DYNAMICS AND CONTROL OF CONICAL SHELLS

Conical shells are widely used as parts or components of nozzles, rocket fairings, etc., in
aerospace structures and turbomachinery. The dynamics and distributed control of conical
shells and other shells of revolution with non-constant LameH parameters can be studied
based on the new piezoelastic shell element with non-constant radii of curvature. A conical
shell panel laminated with distributed piezoelectric layers is clamped at one end and free on
the other three edges (i.e., CFFF). The conical shell is de"ned in Figure 3 and its dimensions
are shown in Figure 4. Geometry and material properties are provided in Table 1. Natural
frequencies and modes of a conical shell panel are investigated "rst and "nite element
solutions are compared with published numerical results. Distributed vibration control of
conical shells with (1) the fully distributed piezoelectric actuator, (2) the partial-diagonally
distributed actuator, and (3) the full-diagonally distributed actuator are investigated and
their control e!ects are evaluated in this section.

The conical shell panel is divided into (20�10) meshes along the longitudinal and
circumferential directions respectively. Therefore, there are 400 triangular shell elements for
each layer and total 1200 elements are used for the panel, Figure 5.



Figure 3. A conical shell panel and its co-ordinate system.

Figure 4. Dimensions of the conical shell panel.

TABLE 1

Geometry and material properties of the laminated conical shell

Aluminum PVDF

Length, S (m) 1)0
Length, ¸ (m) 0)2
Semi-vertex angle, �* (3) 15
Meridional angle, �* (3) 30)247
Thickness, h (m) 1�10�� 9�10�

Density, � (Kg/m�) 2)6573�10� 1)8�10�
Young's modulus, > (Pa) 6)8947�10�� 2)0�10�
The Poisson constant, � 0)3 0)29
Piezostrain constant, d

��
(m/V) 2)2�10���

Electric permittivity, �
��

(F/m) 1)062�10���
Capacitance, C (F/m�) 3)80�10�


Figure 5. Finite element model of the conical shell panel laminated with fully distributed piezoelectric layers.
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4.1. FREE VIBRATION ANALYSIS

Natural frequencies and mode shapes of the conical shell panel are studied "rst. In
order to compare with published data, the dimensionless frequency parameter



TABLE 2

Comparison of FE solutions with published data

Source �
�

�
�

�
�

�
�

�
	

�



�



�
�

FE 5)3182 8)7357 27)300 28)973 51)111 65)595 72)416 81)477
[1] 5)5130 8)9563 26)989 28)852 50)174 64)497 75)479 79)578
[1] 5)5179 8)9608 27)014 28)909 50)267 64)631 75)541 79)815
[2] 6)1727 9)0708 27)299 29)758 50)669 65)171 74)499 80)201

Figure 7. Conical shell panel with (a) full- and (b) partial-diagonally laminated actuators.

Figure 8. Two loading conditions: (a) full-edge loading, (b) half-edge loading.

Figure 6. The "rst four mode shapes of the conical shell panel.
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�
(�h/D)��� is used where �

�
is the circular frequency, � is the mass

density, ¸ is the length of the conical shell panel in the longitudinal direction, ¸
�
is the

projected length of the major edge shown in Figure 4, h is the shell thickness and D is
the bending sti!ness coe$cient D"(>h�)/[12(1!��)]. Finite element solutions (FE) are
compared with published numerical results [1, 2] in Table 2.

These data and comparison suggest that the developed "nite element code is capable of
analyzing conical shells accurately. The "rst four mode shapes of the conical shell panel are
calculated and they are illustrated in Figure 6.
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4.2. DISTRIBUTED VIBRATION CONTROL

The conical shell panel is laminated with two piezoelectric layers on the top and bottom
surfaces serving as sensor and actuator respectively. Three actuator lamination
con"gurations: the full lamination (Figure 5), the partial-diagonal lamination and the
full-diagonal lamination (Figure 7) are designed to evaluate their control e!ectiveness. Two
uniform transverse line loadings with a sum of 1 N are applied on the minor-radius free
edge. One is applied on the whole free-end edge and the other is applied only on half of the
free end, Figure 8. In general, the initial loading is applied to the free edge "rst. Then the
shell is released and free to oscillate. Free oscillation responses of the conical shells with and
without distributed control are evaluated and their inferred damping ratios with di!erent
control gains (0, 10, 20, 25) for three lamination con"gurations are evaluated. Note that
control signals generated from the control gains are within the breakdown voltage of the
distributed piezoelectric actuators.

4.3. CASE 1: FULL-EDGE LOADING

Time histories of the free and controlled responses of the conical shell at the full-edge
loading are plotted in Figures 9}13 and inferred damping ratios are summarized in
Figure 9. Free displacement response (full-edge loading).

Figure 10. Controlled response (gain"25) (fully distributed actuator).



Figure 11. Controlled response (gain"25) (partial-diagonal actuator).

Figure 12. Controlled response (gain"25) (full-diagonal actuator).

Figure 13. Inferred damping ratios at di!erent gains (full-edge loading): 1, full lamination; 2, partial-diagonal
lamination; 3, full-diagonal lamination.
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Figure 13. Note that Figure 9 is the free response, Figure 10 is the controlled response with
the fully distributed actuator, Figure 11 is the controlled response with the partial-diagonal
actuator, and Figure 12 is the controlled response with the full-diagonal actuator. In
general, the "rst-mode response dominates both the free and controlled responses. Note
that all controlled responses were based on the negative velocity constant-gain feedback
control algorithm.



Figure 14. Free displacement response (half-edge loading).

Figure 15. Controlled response (gain"25) (fully distributed actuator).

Figure 16. Controlled response (gain"25) (partial-diagonal actuator).
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4.4. CASE 2: HALF-EDGE LOADING

Again, time histories of the free and controlled responses of the conical shell at the
half-edge loading are plotted in Figures 14}17 and inferred damping ratios are summarized



Figure 17. Controlled response (gain"25) (full-diagonal actuator).

Figure 18. Inferred damping ratios at di!erent gains (half-edge loading). 1, full lamination; 2, partial-daigonal
lamination; 3, full-diagonal lamination.
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in Figure 18. All time-history responses reveal both the "rst-mode and higher mode
frequency components, due to unsymmetrical half-edge loading.

These free and controlled time-history responses reveal that the responses are absolutely
dominated by the "rst-mode at the full-edge loading, while higher mode components
appear in the responses at the half-edge loading. On the three actuator con"gurations, the
full-lamination con"guration has the best control e!ect and the partial-diagonal lamination
con"guration has the least control e!ect for the "rst-mode oscillation. The fully distributed
actuator con"guration is e!ective for the bending dominated natural modes, e.g., the "rst
mode and the fourth mode, Figure 6. The two diagonally laminated actuator con"gurations
would have better control e!ects for second-mode and third-mode oscillations, since
torsion behaviors appear in these two modes [20].

5. SUMMARY AND CONCLUSION

Full or partial conical shells often appear as nozzles, injectors, blades, rocket fairings, etc.,
in aerospace structures and turbomachinery. Undesirable dynamic oscillations not only
degrade the performance, but also in#uence structural integrity and reliability. This report
is to evaluate dynamic characteristics and control e!ectiveness of conical shells laminated
with distributed piezoelectric sensor/actuator layers.
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Electromechanical constitutive equations, governing equations, strain}displacement}
electric "eld relations, and boundary conditions of a generic piezo(electric)elastic shell
continuumwere presented "rst. Finite element formulations of a new triangular piezoelastic
shell element with non-constant LameH parameters were presented, electromechanical
element/system/control matrix equations were derived, and then control algorithms
de"ned. Finite element models of a conical shell with three actuator lamination
con"gurations (i.e., the fully distributed, the partial-diagonally distributed, and the
full-diagonally distributed) were established and two loading conditions (i.e., the full-edge
loading and the half-edge loading) were de"ned, too.

Natural frequencies and modes of the conical shell "nite element models were calculated
using the newly developed "nite element code. Finite element solutions were compared
closely with published numerical results. Thus, the newly developed tool is e!ective in
modelling and analysis of conical shells. Free and controlled time-history responses of the
two loading conditions were studied and inferred damping ratios suggest that the
fully-distributed con"guration is e!ective in the control of bending-dominated natural
modes, e.g., "rst and fourth modes; the diagonally laminated con"gurations are e!ective in
the control of torsion-dominated modes, e.g., second and third modes in this case.
Accordingly, distributed control of conical shells can be achieved. However, this study
suggests that various actuator con"gurations contribute to a di!erence in control
e!ectiveness for the various natural modes. To maximize the distributed control e!ects, an
in-depth understanding of shell dynamics and dominating modes is a must in the e!ective
design and layout of distributed actuators.
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APPENDIX A: FORMULATION OF ELEMENT MATRICES

Detailed element matrices of a laminated piezoelastic shell element are presented here
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